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several ways and sets of compatible formulas for staggered grid
hydrodynamics [1–3] which are derived to inherently conserveAlgebraic limitations imposed by the use of connected straightline

segments to define meshes for hydrodynamics simulations in two- total energy are displayed. Compatible formulas have the prop-
dimensional cylindrical geometries are shown. It is shown that in erty that different arrangements of pressure, mass, area, and
the simplest smooth isentropic flow of the spherical expansion of velocity terms in the total energy conservation equation repre-
a gas with point symmetry, commonly, and currently, used finite

sent the momentum equation at cell vertices, the internal anddifference, finite volume, or finite element staggered grid hydrody-
total energy equations in the cell, and the interface work donenamics equations cannot simultaneously preserve energy, entropy,

and sphericity on an equal-angle R 2 Q mesh. It is further shown by (or on) the faces of the cells. The interface pressure on
why finite difference codes tend to preserve sphericity and entropy, the cell faces is a compatible derived quantity. Any particular
while finite element codes tend to preserve sphericity and energy. equation can be used as a starting point and the others follow.
Exact difference representations of interface (cell face) pressures

But even with these formulas, algebraic limitations in cylindri-and work terms and of the elements of the strain rate tensor in a
cal geometry do not allow the simultaneous conservation ofcell are shown. Q 1996 Academic Press, Inc.

energy and entropy and preservation of sphericity in a calcula-
tion of the expansion of an ideal gas with point symmetry.

INTRODUCTION

STAGGERED GRID HYDRODYNAMICSCommonly used staggered grid hydrodynamic approxima-
tions of the two-dimensional Euler equations cannot simultane- In staggered grid hydrodynamics, velocity, un or Ṙn, and
ously preserve energy, entropy, and sphericity in cylindrical position vectors, Rn, are associated with the nodes (vertices)
coordinates for a problem of isentropic flow with point symme- of cells; volume, density, specific internal energy, and entropy,
try. This limitation applies to Lagrangian calculations and to the Vc, rc, ec, sc, are associated with the interior of cells and interface
Lagrangian phase of Eulerian or ALE calculations. Historically, work and cell face pressure terms are associated with the faces
this class of methods used independently modeled momentum of the cells. The overdot indicates the Lagrangian derivative.
and internal energy equations and total energy was not readily The formulas presented, in general, apply to cells with an
defined, much less conserved. The reasons for this will be arbitrary number of nodes and faces. All hydrodynamic vari-
elaborated below, but briefly there were two. For reasons of ables are assumed to be defined at time t and advanced in
speed, calculations were done on a staggered time grid where lockstep to time t 1 dt. This is an even time grid rather than
internal energy was updated at one time level and kinetic energy a staggered time grid. The symbol d is used to indicate time-
at another time level. This made it difficult to define total level differencing. In the difference form of the formulas, use
energy. The other reason had to do with the desire to maintain will be made of the relation
sphericity in a problem with spherical symmetry. In cylindrical
geometry, the mass of a cylindrical shell of material of constant
density and constant thickness varies with the distance of the F(u ? u)t1dt

2
2

(u ? u)t

2 G5 Sut1dt 1 ut

2 D ? (ut1dt 2 ut) 5 u ? du
shell from the axis. This makes it difficult to construct a momen-
tum equation which will preserve spherical flow. The solution
historically adopted was to effectively solve the momentum to express the change in specific kinetic energy over a time

step in terms of the change in velocity at a node dun and defineequation in Cartesian geometry where the mass did not depend
on the distance from the axis. But this leads to a quandary of the velocity un in the time step to be the mean velocity over

the time step. The specific kinetic energy at time t on node nhow to define both total kinetic energy and total internal energy
in cylindrical geometry. These problems have been resolved in is 0.5 ut

n ? ut
n. This is the scheme advocated by Trulio and Trigger
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in their 1961 paper [4] describing the construction of a conserva- area vectors with different Xn weightings are derived in the Ap-
pendix;tive set of equations in one-dimensional geometries. On a stag-

gered time grid, Trulio and Trigger showed that in one-dimen-
sional geometries, algebraically conservative equations could

(n 1 2)Vc 5 Oc

n

Rn ? An
1,c 5 Oc

n

Rnbe constructed by defining the specific kinetic energy at time
t on node n as 0.5 ut1dt/2

n ? ut2dt/2
n which is not necessarily a

positive quantity. They also pointed out that total energy conser-
?H[Xn(Rn11 2 Rn) 1 Xn(Rn 2 Rn21)] 3 k̂

1 ? 2 Jvation on a staggered time grid could only be achieved if the
time step were constant throughout the calculation; that is, the
Courant condition must be known a priori.

(n 1 2)Vc 5 Oc

n

Rn ? An
2,c 5 Oc

n

Rn

GEOMETRY ?5
[(Xn11 1 Xn)(Rn11 2 Rn)

1 (Xn 1 Xn21)(Rn 2 Rn21)] 3 k̂
2 ? 2

6
The notation used is shown in Fig. 1. Notes defining a cell

are numbered in counterclockwise sequence around the cell.

(n 1 2)Vc 5 Oc

n

Rn ? An
3,c 5 Oc

n

Rn
Cells surrounding a node are numbered in counterclockwise
sequence around the node. One of a set of node area vectors
An

j,c is shown. The node area vectors are outward directed vectors
associated with the cell faces at each node n of cell c. The j
index identifies various weightings of the node area vectors. ?5

[(Xn111 2Xn)(Rn11 2 Rn)
1 (2Xn 1 Xn21)(Rn 2 Rn21)] 3 k̂

3 ? 2
6,

The cell volume and node area vectors are specified per unit
thickness in X-Y coordinates, and per radian in R-Z coordinates.
Formulas will be written in terms of the nodal coordinates Rn,

where the sum oc
n is over the nodes n surrounding cell c. TheZn and Xn 5 Rn

n with n 5 0 for Cartesian (X, Y) coordinates
sum on

c is over the cells c surrounding node n. This sequenceand n 5 1 for cylindrical (R, Z) coordinates. Let k̂ be the unit
can be extended indefinitely by forming linear combinationsvector normal to the X-Y or R-Z plane, R̂ and Ẑ unit vectors in
of the terms above corresponding to different weightings ofthe R and Z directions, and
the (scalar) Xn 5 Rn

n coordinate values of the nodes. In X 2 Y
coordinates, the representations all reduce to a single formula

[(R̂ 3 Ẑ) ? k̂] 5 [R̂ ? (Ẑ 3 k̂)] 5 1. as the Xn 5 Rn
n are all equal 1.

In contrast to the many representations of the cell volume,
With the node position vectors, Rn, taken in cyclic fashion there is only one representation, j 5 3, for the rate of change
(Rn21 5 R4 when n 5 1 and Rn11 5 R1 when n 5 4 in a of the cell volume
quadrilateral), explicit representations of the first few of an
infinite series of formulas for the cell volume in terms of node

V̇c 5 Oc

n

Ṙn ? An
3,c 5 Oc

n

Ṙn

? H[(Xn11 1 2Xn)(Rn11 2 Rn) 1 (2Xn 1 Xn21)(Rn 2 Rn21)] 3 k̂

3 ? 2 J.

This algebraic difference between the single representation of
the rate of change of the volume, and the infinite number of
representations of the volume is the cause of the difficulty in
simultaneously preserving energy, entropy, and sphericity in a
problem with point symmetry in cylindrical coordinates.

The significance of the j 5 3 node area vectors can be
identified by considering the time differential of the cell volume.
The total time derivative of a scalar function f 5 f (R, t) is
given by

FIG. 1. Notation about cell showing nodes and the outward directed node df
dt

5
­f
­t

1
dR
dt

· =f.
area vector for cell c1 at node n1.
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The cell volume is a function only of the vectors defining the Margolin and Nichols note that in a finite volume code, the
acceleration calculated on a momentum control volume is cor-cell nodes Vc 5 Vc(R1, R2, ·, ·, ·). The rate of change of the

cell volume can be written rectly applied only to the center of mass of the body; not to
the node.

dVc

dt
5 Oc

n

dRn

dt
·

­Vc

­Rn
5 Oc

n

Ṙn · An
3,c. COMPATIBLE EQUATIONS

Compatible difference equations provide a simple way toThe j 5 3 node area vector is identified with the differential
preserve the conservation properties of the differential equa-of the cell volume with respect to the node position vector.
tions being modeled. The construction of such equations isThe divergence of the velocity over the cell is
straightforward. Compatible formulas are formed by rearrang-
ing combinations of common terms (pressures, masses, areas,

(= · Ṙ)c 5
1
Vc

dVc

dt
5

1
Vc
Oc

n

Ṙn · An
3,c. and velocities) in the total energy conservation equation to

represent the change in momentum, internal energy, kinetic
energy, and work done on a cell face. The technique will be

Integral definitions of the cell volume and rate of change of illustrated for an ideal fluid. The conservation of energy equa-
cell volume can also be written in terms of sums over the node tion in differential and difference forms is
area vectors. The integral and difference definitions of cell
volume and rate of change of cell volume can be compared: E

V
r(de 1 du · u) dV 5 2dt E

V
= · (pu) dV 5 2dt R

S
(pu) · dA

Vc 5
1

(n 1 2)
E

c
= · R dV V̇c 5 E

c
= · Ṙ dV O

all c

Mc dec 1 O
all n

Mn dun · un 5 2dt O
b

(pbub) · Ab
,b,

5
1

(n 1 2)
R

c
R · dA 5 R

c
Ṙ · dA

where the integrals and sums are over the domain of the prob-
lem. The cell and node masses, Mc, Mn, will be defined below.
The subscript b indicates values on the domain boundary.5

1
(n 1 2) O

c

n

Rn · An
j,c 5 Oc

n

Ṙn · An
3,c .

Over time, difference formulas for the momentum equation
on a staggered space grid have been derived in many ways;

From Fig. 2 and the formulas for An
j,c above, it can be seen from Taylor’s series expansions of the pressure gradient terms

that in cylindrical geometry on an equal-angle R 2 Q mesh, in early finite difference equations [6, 7], through Green’s trans-
only the sum of An

1,c node area vectors of the cells adjoining formations of the pressure gradients in finite volume equations
node n with the common weighting Xn can produce a radial [8], and the equations of virtual work [9] or solution of the
vector. The direction of this vector will determine the direction Lagrange equation [10] to lumped-mass, uniform-strain finite
of the change of velocity at the node. This will be important element equations [11–13] and compatible finite volume equa-
later to the issue of preserving spherical symmetry in cylindrical tions [3, 14, 15]. Most of the difference formulas for the momen-
coordinates for those problems with point symmetry. In [5], tum equation have the generic form

dun 5
dt

Xn(rA)n
On

c

An
j,c pc 5

dt
(rA)n

On

c
SAn

j,c

Xn
D pc,

where the sum is over the cells surrounding the node. The terms
in the equation are variously defined. In finite difference [6, 7]
and finite volume [8, 15] codes, the area node vector An

1,c with
j 5 1 is normally chosen (by experience or by default) to
obtain spherical symmetry in a problem with point symmetry
in cylindrical coordinates on the equal-angle mesh of Fig. 2.
The Xn term in the denominator then cancels the Xn weighting
in the definition of An

1,c and reduces the equation to the Cartesian
form. The (rA)n term represents the product of the density and
the area Jacobean at the node. In finite element codes, the effect
of Petrov–Galerkin (1/R) weighting [11–13] is to chooseFIG. 2. Node area vectors in equal-angle mesh. Only the sum of An

1,c

j 5 1 in An
j,c which also cancels the Xn in the denominator ofvectors for cells 1 and 2 with j 5 1 will produce a radial vector in cylindri-

cal coordinates. the momentum equation. Direct solutions of the virtual work
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[9], Lagrange equation [10], and finite-element equations de- can be summed over either cells or nodes. Note that Mn is zero
on the z axis in cylindrical coordinates. As the hydro equationsrived without 1/R weighting introduce the vector direction of

An
3,c in the momentum equation through the term ­Vc/­Rn. Some calculate the change in specific quantities, dun, dec, rc, the

Schulz mass definition works just fine (but care must be takenfinite volume codes [3, 14] also introduce the vector direction
of An

3,c in the momentum equation. Such codes cannot preserve to introduce sources and sinks as specific quantities).
A corner mass can be based on the An

1,c definition of cellspherical symmetry in a symmetric problem on the equal-angle
mesh of Fig. 2. volume by considering a path around the quadrilateral q in Fig.

3 defined by nodes (5, n 2 1, n n 1 1; n 5 1, ..., 4), whereIt is useful to have a mass associated with a cell corner just
as the node area vector is associated with the cell corner [15]. R5 is the mean of the node position vectors R1, ..., R4 defining

the cell. ThenSchulz in his 1964 paper [7] defined cell and nodal masses in
terms of masses associated with cell corners Mc

n such that

Mc
n 5 rc Oq

n

Xn

2(n 1 2) HRn · F(Rn11 2 Rn21)

2
3 k̂ GJ

c
Mn 5 On

c

Mc
n, Mc 5 Oc

n

Mc
n.

The Schulz corner masses were defined in a way easy to com- is basically half the mass of the triangle with sides n 2 1,n
pute with 1960’s equipment and n,n 1 1 except in cells with extreme distortion. The sum

of the corner masses about the node n is

Mc
n 5 Xn

(rA)c

4
,

Mn 5 Oc

n

Mc
n 5 Xn On

n

rc

2(n 1 2) O
q

n
HRn · F(Rn11 2 Rn21)

2
3 k̂ GJ

cwhere r and A are the density and planar area of cell c. The
mass of cell c is then

which defines Mn 5 Xn(rA)n. Mc 5 oc
n Mc

n 5 rcVc is the Lagran-
Mc 5 Oc

n

Mc
n 5 Oc

n

Xn(rA)c

4
5 (rA)c Oc

n

Xn

4
gian cell mass. This definition of corner mass has all of the
properties of the Schulz corner mass and, in addition, represents
the true mass of the cell. Many other definitions of corner, cell,

which is obviously not the true mass of the cell in cylindrical and node masses and the area Jacobian, generally based on
geometry. The node mass is concepts of momentum control volume, have been used. The

equations which follow are general and do not assume specific
relations among the mass variables.

Mn 5 On

c

Mc
n 5 On

c

Xn(rA)c

4
5 Xn On

c

(rA)c

4
5 Xn(rA)n The steps to produce a compatible internal energy equation,

while conserving total energy are to substitute the difference
form of the momentum equation for dun into the difference

which defines (rA)n. This definition sets the term appearing in
the compatibility equations

Mn

Xn(rA)n
5 1.

These definitions have the properties that the sum of cell masses
equals the sum of node masses,

O
all c

Mc 5 O
all c

Oc

n

Mc
n 5 O

all n
On

c

Mc
n 5 O

all n

Mn

and the total kinetic energy

FIG. 3. Notation for defining cell corner mass Mc1
n1 as half the mass inKE 5 O

all c
Oc

n

Mc
n(.5un · un) 5 O

all n
On

c

Mc
n(.5un · un)

quadrilateral q.
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form of the total energy equation and rearrange (assemble) where T is the temperature and s is the entropy of the cell. The
cell entropy in smooth isentropic flow can only be preserved,terms by cell quantities,
dsc 5 0, if the internal energy equation were calculated with
j 5 3 An

j,c area node vectors. For compatibility and total energyO
all c

Mc dec 1 O
all n

Mn dun · un 5 2dt O
b

(pbub) · Ab
,b

conservation, j 5 3 area node vectors would then be used in
the momentum equation. But j 5 3 node area vectors do not
combine to radial vectors in an equal-angle mesh and will notO

all c

Mc Fdec 1
dt pc

Mc
Oc

n

Mn

Xn(rA)n
An

j,c · unG5 2dt O
b

(pbub) · Ab
,b

preserve a spherical flow.
The usual choice in finite difference and finite volume hydro-

dec 5
2dt pc

Mc
Oc

n

Mc

Xc(rA)n
An

j,c · un. dynamic codes [6–8] is to use j 5 1 area node vectors in the
momentum equation and j 5 3 area node vectors in the internal
energy equation. This choice preserves spherical symmetry on

The result is the compatible equation for the change in specific an equal-angle mesh and keeps a smooth flow on the starting
internal energy. For compatibility and total energy conservation isentrope. Total energy conservation is abandoned. In contrast,
in cylindrical coordinates, the choice of j in the An

j,c area vector by the very nature of their construction, finite element codes
terms must be the same in the momentum and in the internal are inherently compatible and energy conserving. The typical
energy equations. To preserve sphericity on an equal-angle Petrov–Galerkin weighting [11–13] introduces the j 5 1 area
mesh in cylindrical coordinates for a problem with point sym- node vectors which preserve spherical symmetry and these are
metry, the j 5 1 node area vector must be chosen. automatically used in both the momentum and internal energy

The differential and difference equations for the conservation equations as written above. The change in entropy, of course,
of total energy can now be put in the form is based on the change in volume, d(volume) is given by j 5

3, not j 5 1 area node vectors, and is not preserved.O
all c

Mc dec 1 O
all n

Mn dun · un 5 2dt O
b

(pbub) · Ab
,b As a result of these observations, Burton in 1994 modified

a cylindrical geometry code [15] to use the j 5 1 area node
vectors in the momentum and internal energy equations and todt E

V
(2p = · u 2 u · =p) dV 5 2dt R

S
(pu) · dA

simultaneously preserve entropy by an interesting device. Ex-
cept at the initial time, the cell volume is not calculated from
the coordinates of the cell but is carried as an internal variabledt FO

all c

2 pc Oc

n

Mn

Xn(rA)n
An

j,c · un 1 O
all n

Mn

Xn(rA)n
un · On

c

An
j,c pcG

and updated by calculating the change in cell volume using the
j 5 1 vector in the expression for the divergence of velocity.5 2dt O

b

(pbub) · Ab
,b,

INTERIOR INTERFACE (CELL FACE) WORK TERMS
where the first term is the change in internal energy and the AND INTERFACE (CELL FACE) PRESSURES
second term is the change in kinetic energy. If Mn 5 Xn(rA)n

the total energy equation is Just as the assembly of terms in the conservation equation for
total energy as coefficients of pc and uc lead to representations of
p div u and u · grad p, another grouping of terms as coefficients

dt FO
all c

2 pc Oc

n

An
j,c · un 1 O

all n

un · On

c

An
j,c pcG5 of the cell face area vectors lead to difference representations

of cell face work terms, (pu) · dA, and cell face pressure terms.
2dt O

b

(pbub) · Ab
,b. The cell face area vectors will be formed of the common vector

parts of the two node area vectors defining the cell face n,n 1 1,

Solving the momentum equation allows the node coordinates
to be moved and the cell volume and density at the advanced

An,n11 5
(Xn11 1 Xn)

2
(Rn11 2 Rn) 3 k̂,time to be calculated. Solving the compatible internal energy

equation defined above determines the internal energy at the
advanced time. With the density and internal energy defined where the notation used is illustrated in Fig. 4. (The j distinction
in each cell, the cell entropy can be determined from the equa- drops out in the definition of the cell face area vector as the
tion-of-state. (Consider evaluating pcV c

c at successive times for coefficients of Xn and Xn11 become equal in the sum.) The
an ideal gas.) The change of entropy in the cell will be the coefficients of this term for one cell face, n,n 1 1, will be
same as if it were calculated from the equation extracted from the difference form of the total energy conserva-

tion equation.
Collecting all coefficients of the cell face area vectors fromTc dsc 5 dec 1

dt pc

Mc
Oc

n

Mn

Xn(rA)n
An

3,c · un,
the expressions for the change of internal and kinetic energy
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reduce to a single value only if cell masses across the interface
are constant. The interface pressure nearest node n, Fig. 4, is

pn
b 5

p3(M1
n 1 M4

n) 1 p4(M2
n 1 M3

n)

(M1
n 1 M2

n 1 M3
n 1 M4

n)
.

This formula reduces to the average of the two cell pressures
if the cell components of the nodal masses on either side of
the interface are equal. As in compatible one-dimensional codes
[16], if the interface is an exterior boundary, the cell face
pressure reduces to the applied boundary pressure, p3 (the exte-
rior masses, M2

n and M3
n, are zero). The two values of interface

pressure on each face of a cell are in contrast to the single
FIG. 4. Notation for describing interface work and pressure terms. value of interface pressure associated with Godunov solutions

on the face of a cell. This is related to the difference between
solving for vertex and face velocities. (The eight velocity com-
ponents on the vertices of a quadrilateral allow the representa-of a cell leads to the equation (in a quadrilateral mesh) for the
tion of the four fundamental modes of motion of the cell:work done on the cell face (interface) in time dt,
translation, dilation/compression, shear/rotation, and hour
glassing. The four (normal) velocity components on the faces

dWn,n11 5 2dt
An,n11

2 of a cell allow the representation of the translation and dilation/
compression modes. The two velocity components of a cell
centered velocity code allow only the representation of the
translation mode.)

·5Fun11 Sp3(M4
n11 1 M5

n11) 1 p4(M3
n11 1 M6

m11)

(M4
n11 1 M6

n11 1 M3
n11 1 M5

n11)
DG

F1 un Sp3(M1
n 1 M4

n) 1 p4(M2
n 1 M3

n)

(M2
n 1 M4

n 1 M1
n 1 M3

n)
DG 6,

STRAIN RATE TENSOR

The difference forms of the elements of the strain rate tensor
in cylindrical geometry are not generally reported. Using thewhich corresponds to one cell face term of the interior boundary
form for V̇c derived in the Appendix, it is easy to write thework in the conservation equation
exact difference forms of the terms in the strain rate tensor for
either plane or cylindrical geometry for a cell with any numberO

int c

Mc dec 1 Oc

n

Mn dun · un (.2) of nodes:

5 2dt O
int b

Ab
,b · (pbub) 5 O

int n

dWn,n11,

where the sum is over an interior region of cells with the
i«̇(R, Z)i 5 1

­Ṙ
­R

1
2 S­Ṙ

­Z
1

­Ż
­RD 0

1
2 S­Ṙ

­Z
1

­Ż
­RD ­Ż

­Z
0

0 0
Ṙ
R

2,associated nodes and cell face boundaries. With this definition
of the work on a cell face, total energy conservation can be
examined over any subregion of a mesh, including a single
cell. The change in internal energy, for example, could be
calculated by subtracting the change in cell kinetic energy from
the work done on the cell. The result would be identical to that where
obtained from solving the internal energy equation (with the
same j value used in the momentum equation). ­Ṙ

­R
5

1
2(n 1 2)Vc

Oc

n

Ṙn[(Xn 1 Xn11)Zn11 2 (Xn21 1 Xn)Zn21]For clarity in this illustration of the compatible definition of
the interface work and pressure, the term Xn(rA)n has been
identified with the sum of the cell corner components of the ­Ṙ

­Z
5

1
2(n 1 2)Vc

Oc

n

2 Ṙn[(Xn 1 Xn11)Rn11 2 (Xn21 1 Xn)Rn21]nodal mass, M1
n 1 M2

n 1 M3
n 1 M4

n in Fig. 4 which would be
the case in a well-organized code. It will be noted that in the
compatible definition of the interface work term, two values ­Ż

­R
5

1
2(n 1 2)Vc

Oc

n

Żn[(Xn 1 Xn11)Zn11 2 (Xn21 1 Xn)Zn21]
of the pressure are defined on each cell face. The two pressures
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­Ż
­Z

5
1

2(n 1 2)Vc
Oc

n

2 Żn[(Xn 1 Xn11)Rn11 2 (Xn21 1 Xn)Rn21]

Ṙ
R

5
1

2(n 1 2)Vc
Oc

n

Ṙn[(XnZn11 2 Xn11Zn 1 Xn21Zn 2 XnZn21)].

As usual, the sums are to be taken in cyclic order over the
nodes around the cell and Xn 5 Rn

n with n 5 1 in R-Z geometry
and n 5 0 in X-Y geometry. It can be noticed that the derivative
terms limit to the Cartesian values (the cell volume is numeri-
cally equal to the cell area) and the Ṙ/R term goes to 0 in
X-Y geometry. As the terms are derived from the exact expres-
sion for the time rate of change of the cell volume, the trace FIG. 5. Geometry to define volume formulas for cell c defined by nodes

1 to 5.of the strain rate tensor is automatically preserved.

CONCLUSIONS of the cell, c, formed by a polygon rotated one radian about
the z axis is

This note has attempted to set forth the algebraic causes of
effects familiar to most people working with solutions of the

(n 1 2)Vc 5
1
2 O

c

n

(Xn 1 Xn11)(Rn 1 Rn11) · k̂Euler equations in cylindrical coordinate systems. That is, the
difficulty of simultaneously conserving total energy and pre-
serving entropy and sphericity in the simple problem of the

5
1
2 O

c

n

(XnRn 3 Rn11 2 Xn11Rn11 3 Rn) · k̂expansion of a gas with point symmetry. The note has addressed
only typical staggered grid difference schemes, where the mo-
mentum equation can be forced into the generic form chosen. 5

1
2 O

c

n

XnRn 3 (Rn11 2 Rn21) · k̂
No attempt is made to discuss Godunov type schemes which
calculate cell edge velocities and pressures, or schemes where
all information is carried on nodes or mass points. It is hoped 5

1
2 O

c

n

Rn · [Xn(Rn11 2 Rn21) 3 k̂]
that the discussion presented alerts the reader to the conse-
quences of certain choices of differencing techniques.

5 Oc

n

Rn ·
h[Xn(Rn11 2 Rn) 1 Xn(Rn 2 Rn21)] 3 k̂j

1 · 2Because they are rarely, if ever, shown for staggered grid
hydrodynamics, formulas are presented for cell face pressures
and work terms. For the same reason, exact difference formulas

5 Oc

n

Rn · An
1,c,for the elements of the strain rate tensor in cylindrical geometry

are shown.

where the sums are to be taken in cyclic fashion.
The j 5 2 formula is

APPENDIX: DERIVATION OF VOLUME FORMULAS

(n 1 2)Vc 5
1
2 O

c

n

(Xn 1 Xn11)(Rn 3 Rn11) · k̂The notation used is illustrated in Fig. 5. By Pappus’ rule,
in cylindrical coordinates the volume per radian of each of the
triangles emanating from the origin is

5
1
2 O

c

n
F(Xn 1 Xn11)

2
(Rn 3 Rn11)

Vn1n11 5
(Xn 1 Xn11 1 0)

(n 1 2)

(Rn 3 Rn11)

2
· k̂,

1
(Xn21 1 Xn)

2
(Rn21 3 Rn)G · k̂

where k̂ is the unit vector normal to the R-Z plane and Xn 5
5

1
2 O

c

n

Rn 3 HF(Xn 1 Xn11)
2

(Rn11 2 Rn)Rn
n with n 5 1 in R-Z geometry and n 5 0 in X-Y geometry.

In the example shown, triangles 012, 023, 034, and 045 con-
tribute positive values to the total volume of the polygon; 1

(Xn 1 Xn21)
2

(Rn 2 Rn21)G · k̂J
triangle 051 subtracts out the excess volume. Thus the volume
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A continuing sequence of relations can be formed by summing
the formulas above.

The formula for the time derivative of the cell volume is5 Oc

n

Rn ·5
[(Xn 1 Xn21)(Rn11 2 Rn) 1

(Xn 1 Xn21)(Rn 2 Rn21)] 3 k̂
2 · 2

6
5 Oc

n

Rn · An
2,c

2(n 1 2)Vc 5 Oc

n

(Xn 1 Xn11)(Rn 3 Rn11) · k̂

2(n 1 2)V̇c 5 Oc

n
F(Xn 1 Xn11)(Rn 3 Ṙn11 1 Ṙn 3 Rn11)

1n(Ẋn 1 Ẋn11)(Rn 3 Rn11)
G · k̇

5 Oc

n
H(Xn 1 Xn11)(RnŻn11 2 Ṙn11Zn 1 ṘnZn11 2 Rn11Żn)

1n(Ẋn 1 Ẋn11)(RnZn11 2 Rn11Zn)
J

5 Oc

n 51Ṙn F(Xn 1 Xn11)Zn11 2 (Xn21 1 Xn)Zn21

1n(XnZn11 2 Xn11Zn 1 Xn21Zn 2 XnZn21)
G

2Żn[(Xn 1 Xn11)Rn11 2 (Xn21 1 Xn)Rn21]
6

⇒ Oc

n
H1Ṙn[(2Xn 1 nXn11)(Zn11 2 Zn) 1 (2Xn 1 nXn21)(Zn 2 Zn21)]

2Żn[(2Xn 1 nXn11)(Rn11 2 Rn) 1 (2Xn 1 nXn21)(Rn 2 Rn21)]
J

V̇c 5 Oc

n

Ṙn ·H[(2Xn 1 nXn11)(Rn11 2 Rn) 1 (2Xn 1 nXn21)(Rn 2 Rn21)] 1 k̂
2 · (n 1 2) J

V̇c 5 Oc

n

Ṙn · An
3,c.
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